Optical Coherence Tomography (OCT) is a noninvasive optical imaging technique that produces real-time, 2D cross-sectional and 3D volumetric images of a sample. This technique provides structural information about the sample based on light backscattered from different layers of material within that sample, producing images with micron-level resolution and millimeters of imaging depth.

OCT imaging can be considered as an optical analog to ultrasound imaging that achieves higher resolution at the cost of decreased penetration depth. In addition to high resolution, the non-contact, noninvasive nature of OCT makes it well suited for imaging samples such as biological tissue, small animals, and industrial materials.

Thorlabs' Telesto® OCT Imaging Systems provide the flexibility required for long-range and high-resolution imaging applications. The 64-bit software pre-installed on the included computer displays and processes 2D and 3D OCT data in real time. Scanner options include a robust standard scanner and a user-customizable scanner. Optional accessories are available below to customize your OCT system to meet the requirements of your application. Additionally, Thorlabs offers complete, preconfigured OCT systems for 1300 nm or 1325 nm based on the components sold on this page, and each system is available with a maximum A-scan rate of 76 kHz or 146 kHz.

Features

  • Configurable OCT Systems Optimized for High-Resolution Imaging with Deep Penetration
    • 3.5 mm Imaging Depth with 5.5 µm Axial Resolution in Air
      (1300 nm Center Wavelength)
    • 7.0 mm Imaging Depth with 11 µm Axial Resolution in Air
      (1325 nm Center Wavelength)
  • Base Units with A-Scan Rates of 76 kHz Available
    • 111 dB Max Sensitivity at 5.5 kHz Scan Rate
  • Base Units with A-Scan Rates of 146 kHz Available
    • 109 dB Max Sensitivity at 10 kHz Scan Rate
  • Includes Computer and ThorImage®OCT Software Package
    (See the Software Tab)
  • Build-Your-Own and Preconfigured Systems Available

Choose Components to Build or Customize Your OCT System

  • Choose from High-Resolution (1300 nm) or Long-Range (1325 nm) Base Units
  • Standard and User-Customizable Scanners Available
  • Scan Lens Kits to Optimize Lateral Resolution and Focal Length for Your Application
  • Ring- and Immersion-Style Sample Z-Spacers for Air or Liquid Imaging Applications
  • Scanner Stand and Translation Stage Accessories

OCT Family Updates

We recently improved the OCT Base Units, and the new additions include:

  • Fully Configurable Trigger for Integration into Larger Experiments
  • Analog Input for Combining Other Data Sources with the OCT Signal
  • Internal Hardware Diagnostics for Improved Troubleshooting

The SD-OCT standard scanners have also been redesigned with a new micrometer screw for more precise reference arm positioning.

New features added to ThorImage®OCT include a despeckle filter, 3D speckle variance mode, and automatic peak detection. 

  • Scan an OCT Light Source Beam Across a Sample to Acquire 2D or 3D Images
  • Two Available Options
    • Standard Scanner for High Stability and Ease-of-Use
    • User-Customizable Scanners with Open Construction for Customization of Scan Path

Thorlabs' OCT Scanning Systems are designed to scan the OCT light source beam across a sample for 2D cross-sectional and 3D volumetric imaging. OCT applications can vary widely, from live animal imaging to industrial materials analysis, with each requiring a different set of scanning parameters. We currently offer standard and user-customizable beam scanning systems for use with our Telesto® Base Units.

Each scanner contains an OCT interferometer with a sample arm and a reference arm. The reference arm of the OCT interferometer is placed near the sample and housed within the scanning system itself to guarantee the phase stability of the sample arm relative to the reference arm. To account for different sample distances and reflectivities (e.g., while imaging through water), the reference arm path length, as well as the reference arm intensity, is user-adjustable. To minimize image distortion caused by dispersion, our OCT systems are designed to optically match the reference and sample arm lengths to the greatest extent possible. Dispersion effects from the sample (e.g., imaging through water or glass) can be compensated for using the included ThorImage OCT software. For customers interested in dual-path setups, any of these scanners can be configured without a beamsplitter; please contact This email address is being protected from spambots. You need JavaScript enabled to view it. for more information.

All scanners are equipped with an integrated camera that can obtain real-time en face video of the sample during OCT measurements when used with our ThorImage OCT software (see the Software tab for details). Illumination of the sample is provided by a ring of user-adjustable white light LEDs around the exit aperture of each scanner.