Laser Quantum Tera-SED produces intense terahertz radiation after excitation with femtosecond laser pulse

Laser Quantum Tera-SED

 

Above: Basic THz generation principle of the Tera-SED emitters. The fs laser radiation (red) comes from the top and excites the GaAs substrate (blue). Every second gap between the + and – electrodes is masked with an isolation layer (green) and gold (yellow) in order to inhibit destructive interference between THz fields emitted from adjacent gaps in the far-field.

The Laser Quantum Tera-SED is a device emitting intense terahertz (THz) radiation after excitation with a femtosecond (fs) laser pulse. It converts the light from the optical regime into the THz regime with a conversion efficiency of up to 2 x 10-3. The impulsive excitation inherently leads to THz pulses covering a broad spectrum in the frequency regime. The spectrum covers almost two decades from about 100GHz up to 7THz with an intensity peak at 1THz (see figure 1). In this frequency range the electric field of the light is directly measurable in amplitude and phase which is important for a large variety of scientific and technological applications.

 

 

Read more by downloading the whitepaper here.

You are here: Home Lasers & Sources Ultrafast THz Laser Quantum Tera-SED produces intense terahertz radiation after excitation with femtosecond laser pulse