Thorlabs MIR Supercontinuum Laser

10819 Pwest SupercontinuumSource 1


  • 300 mW Output Power Over Entire Bandwidth
  • >110 mW Output Power over 2.2 - 4.2 µm
  • 0.025% (Typical) Intensity Noise Enables Highly Sensitive Measurements
  • Robust All-Fiber Design for Hands-Off, Reliable Operation
  • Record-High Brightness Enables Remote and Standoff Detection
  • Compatible with Standard FTIR Spectrometers

The Thorlabs SC4500 is the world's first commercially available femtosecond-laser-pumped MIR Supercontinuum Source. This source emits over a wavelength range from approximately 1.3 μm to 4.5 μm (7700 cm-1 to 2200 cm-1) with >300 mW of average output power in a collimated beam. More than 110 mW of the output power is within the 2.2 - 4.2 µm (4500 cm-1 - 2400 cm-1) range, which overlaps with many gas absorption lines and other molecular signatures. The brightness of this source exceeds traditional Globars and even synchrotron sources by orders of magnitude.

The laser cavity can be purged via a gas inlet located in the back panel of the laser head. A gas supply connected to this inlet can cause gas to flow through the internal beam path of the laser to reduce undesirable absorption lines in the environment. This gas supply should not be pressurized. The output port of the SC4500 includes a KF16 vacuum compatible flange which can be used to connect the output to other purge capable instruments or devices.

The supercontinuum light is generated by pumping a dispersion-engineered indium fluoride (InF3) fiber with a high-power femtosecond fiber laser. Unlike supercontinuum sources pumped in the long-pulse regime (picoseconds to nanoseconds), the spectrum of a femtosecond-pumped source is stable from pulse to pulse. As a result, our supercontinuum source provides a typical output noise of 0.025% (RMS; 10 Hz to 1 MHz), greatly aiding applications that require high-sensitivity detection.

High brightness and low output noise make the SC4500 the ideal source for sensing and spectroscopy applications in the MIR. Applications range from environmental sensing of greenhouse gases to standoff detection in the field to spectroscopy in the lab using standard FTIR spectrometers. In addition, this source's shot-to-shot spectral stability allows it to be used as a source of femtosecond pulses in the MIR by filtering the output through a bandpass filter. An all-fiber design with proprietary fluoride-to-silica fiber splices offers robust, reliable, and maintenance-free performance.

More details on this source are available from Salem R, Jiang Z, Liu D, et al., Opt. Express 2015 Nov 16; 23 (24): 30592 - 30602 2015 Nov 16; 23 (24): 30592 - 30602.


  • Environmental Sensing
  • Standoff Detection of Chemical and Biological Threats
  • Absorption Spectroscopy with High Sensitivity
  • Infrared Spectromicroscopy
  • Ultrafast Spectroscopy
  • Femtosecond Pulse Generation in the MIR
You are here: Home Lasers & Sources Ultrafast Supercontinuum Thorlabs MIR Supercontinuum Laser