Drive Electronics

Signal Recovery 7124: The only lock-in amplifier with an all analog front end

 

Since the invention of the lock-in amplifier, none has been more revered and trusted than the PAR124A by Princeton Applied Research.  With over 50 years of experience, Signal Recovery (formerly Princeton Applied Research) offers the 7124: the only lock-in amplifier that has an all analog front end separated, via fiber, from the DSP main unit.   

Since their invention back in the 1960's, lock-in amplifiers have been used whenever the need arises to measure the amplitude and/or phase of a signal of known frequency in the presence of noise. Unlike other AC measuring instruments they have the ability to give accurate results even when the noise is much larger than the signal - in favorable conditions even up to a million times larger. 

Early instruments used analog technology, with manual controls and switches, and with output readings being taken from large panel meters. Later, microprocessors were added to give more user-friendly operation, digital output displays, and to support computer control. More recently the analog phase sensitive detectors forming the heart of the instrument have been replaced by DSP (digital signal processing) designs, further improving performance. 

But the addition of this digital technology has had one unfortunate side effect, which is that the instrument itself can act as a source of digital clock and switching noise, which is typically coupled back into the experiment via the signal or internal oscillator connectors. This noise is of course rejected by the lock-in and generally does not impair its performance, but the power it dissipates in the sample or device under test can cause serious problems. This is particularly the case in low temperature physics experiments. 

SIGNAL RECOVERY is therefore proud to introduce the model 7124 precision lock-in amplifier, which is particularly suited to such work. It uses a unique analog fiber optic link to interconnect a remote connection unit (RCU), to which the experiment is connected, and a main instrument console. In normal operation there are no digital clock signals within the RCU, and so it can emit no switching noise. 

This architecture gives an instrument with all the advantages of the latest DSP technology for signal detection, and a powerful processor for easy user operation, as well as the low noise performance that until now has only be available in instruments of all-analog design. 

Signal and Reference Connections 
In normal use the 7124's signal and reference connections are made at the RCU. The signal input can be switched to operate in single ended or differential voltage mode, or in current mode with a choice of two transimpedance settings. It can also be used to switch between two single-ended voltage signals, for simple sequential measurement, under computer control, of two inputs.  In cases where further preamplification is needed then one of the SIGNAL RECOVERY remote preamplifiers can be used, with its output connected to the 7124's single ended voltage input. This flexible choice of input modes allows the best possible connection to be made to the experiment. The RCU also has both general purpose analog and TTL logic reference inputs, as well as the output for a precision DDS oscillator that generates a sinewave signal of adjustable frequency and amplitude.  

The RCU is connected to the main instrument console via a 16ft (5 m) fiber cable bundle that carries the applied signal and oscillator outputs in analog form, and control signals to the RCU and the reference signal from it, in digital format. However, the RCU contains no digital clocks or oscillators that are running continuously, and so unlike all other lock-in amplifiers that use any form of logic control, there is no digital switch noise present at the signal connectors.

You are here: Home Lasers & Sources Drive Electronics Lock-in amplifiers Signal Recovery 7124: The only lock-in amplifier with an all analog front end