• Abberior Instruments and Super Resolution Microscopy at Lastek
    Abberior Instruments and Super Resolution Microscopy at Lastek

    Abberior Instruments has partnered with Lastek in Australia and New Zealand to offer the most complete experience for super resolution microscopy. Read more here.

  • Raptor Photonics OWL 640 SWIR camera
    Raptor Photonics OWL 640 SWIR camera

    Raptor Photonics OWL 640 is the best performing SWIR camera in the world. Demonstration system now available. Please enquire for details. Read more.

  • Toptica: DL pro with Digital Laser Controller DLC pro
    Toptica: DL pro with Digital Laser Controller DLC pro

    The new digital laser controller for TOPTICA’s tunable diode laser DL pro sets new benchmarks with regards to low noise and low drift levels.

    Demonstration system now available. Please enquire for details. Read more...

  • High Finesse Laser Spectrum Analyzer Spectrometer for Broadband Sources
    High Finesse Laser Spectrum Analyzer Spectrometer for Broadband Sources

    The High Finesse LSA Laser Spectrum Analyser analyses multi-line or broadband spectra of cw and pulsed lasers, gas discharge lamps, and more.  Lastek currently have a demonstration system available for evaluation. Read more...

  • Alio Industries: True Nano™ Precision Motion Systems
    Alio Industries: True Nano™ Precision Motion Systems

    ALIO Designs and Manufacturers Proprietary Robotic Devices and Tools that Enable Precise Nano-Scale Movements for Manufacturing and Research & Development

    Read more...

Edmund Optics Semiconductor Supermirrors

 semicon supermirror

Optical supermirrors have been rapidly gaining traction given their extremely high reflectivity and ultralow optical losses from scatter and absorption. They are crucial to many research and development efforts, as well as emerging industrial applications in spectroscopy, metrology, precise manufacturing, and sensing. For example, the ultra-low optical losses of optical supermirrors allow cavity ring-down spectroscopy systems to study gaseous samples with higher sensitivity and throughput than ever before.

To address this trend, a new class of Semiconductor Supermirrors has been developed that feature a single-crystal optical interference coating and provides excess optical losses (scatter and absorption) as low as 3ppm in the NIR (1064 – 1550nm) and 159ppm in the mid-IR (3 - 4μm). These Semiconductor Supermirrors outperform any other IR mirrors currently on the market due to their high reflectivity of >99.9%, low optical loss, low mechanical loss, and high thermal conductivity. Crystalline Mirror Solutions won a Prism award in the category of Materials and Coatings for this mid-IR coating technology.

  • Lowest mechanical loss and highest thermal conductivity of any current supermirror technology.
  • Ultralow optical losses in the mid-IR surpassing that of ion-beam sputtered multilayer coated mirrors
  • Microroughness of approximately 3Å
  • Robust reflecting surface that can be cleaned and does not degrade
  • Ideal for demanding applications including cavity ring-down spectroscopy and reference cavities for laser stabilization
  • Won a Prism award in the category of Materials and Coatings

Crystalline Coating Structure

Super-polished silicon or fused silica are coated with alternating single-crystal GaAs high-index layers and Al0.92Ga0.08As low-index layers of quarter-wave optical thickness. By simply changing the thickness of the semiconductor layers, the center wavelength of the mirror is continuously tuned from 0.9 - 4.0 µm. Full details on the coating process, material structure, and optical performance are included in the research paper found in the Training Materials section below.

 

fig 1 ss

Figure 1: NIR Semiconductor Supermirror structure and sample reflectance

fig 2 ss

Figure 2: MIR Semiconductor Supermirror structure and sample reflectance

Graphic source "High-performance near- and mid-infrared crystalline coatings" Optica 6 June 2016: Vol. 3, No.6 (used by permission)

Please contact us for current in stock availability rates and to learn more about this exciting new technology.

Download further information:

Research Article 1: High performance Near and Mid Infrared crystalline coatings.

Research Article 2: Cavity ring-down spectroscopy discovery made possible by these mid-IR mirrors

 

You are here: Home Edmund Optics Semiconductor Supermirrors